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Dataset	

"	Acoustic	Model	
§  Kelz et al. (2016): 

§  Piano-specific CNN 
§  Bittner et al. (2017): 

§ General-purpose  
multi-pitch detection system 

We compare various neural-network approaches to  
learn a mapping from posteriogram to piano-roll 

Problem	statement	
§ MAPS dataset: classical piano music 
§ Split: trained on synthetic pianos, 
tested on real pianos 
§ Inputs downsampled to 16th note 
timesteps using A-MAPS annotations 

"	Outputs	
§  Sigmoid outputs + threshold post-processing 

§  Threshold tuned on validation dataset 
§ Dong et al. (2018): Binary neurons 

§  Forward: step function, backward: sigmoid 
§ Good results for music generation with GAN 

"	Training	loss	

§  Frame-based: 
§  Sigmoid outputs: Cross-entropy 
§  Binary outputs: F-measure 

§  Adversarial: Wasserstein GAN 
§ Conditional discriminator 
§  Architecture inspired by DCGAN:  

(3x3 convolutions, stride 2x2)*4  
+ 2 dense layers 

Comparison:	16	configurations	

Results	

"	Baselines	

§  Thresholding posteriogram  
(threshold tuned on validation set) 
§  Poliner et al. (2016) :  
Pitchwise on/off HMM decoding 

§  Ycart et al. (2018): 
§  Single-layer LSTM, 100 hidden nodes  

§ Newly-proposed CNN 
Legend 
Filters : (number) height x width  

 
 
Filters : Channel concatenation 
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Metric Thresh HMM Cross-entropy F-measure WGAN WGAN-Binary
LSTM CNN LSTM CNN LSTM CNN LSTM CNN

Fr
am

e F 67.9 49.6 66.8 70.8 66.5 70.4 64.7 69.7 64.1 68.7
P 70.9 74.1 72.6 73.4 70.2 72.2 72.5 74.1 74.4 73.9
R 66.7 40.1 63.2 69.6 64.6 70.1 59.8 67.2 57.8 65.5

N
ot

e F 45.0 43.8 43.4 53.2 43.1 51.6 40.4 49.4 41.1 46.9
P 44.0 82.4 42.8 50.9 39.3 50.7 39.5 50.1 40.5 44.6
R 47.5 31.3 45.6 57.1 49.4 53.9 43.0 50.0 43.6 51.0

Metric Thresh HMM Cross-entropy F-measure WGAN WGAN-Binary
LSTM CNN LSTM CNN LSTM CNN LSTM CNN

Fr
am

e F 58.8 61.5 52.1 66.3 35.8 66.0 43.4 58.8 41.1 56.8
P 59.6 52.6 48.0 68.5 26.9 69.3 43.9 58.7 35.9 61.9
R 61.5 79.6 60.5 66.1 65.4 65.3 47.7 60.9 50.8 56.4

N
ot

e F 44.6 48.4 39.3 53.4 31.9 53.1 30.1 43.2 36.2 44.0
P 42.2 62.5 35.7 49.3 25.2 50.7 27.6 40.8 34.4 44.8
R 48.6 40.4 45.1 59.9 45.6 57.3 34.5 47.2 39.2 44.5

Model Framewise On-Notewise
P R F1 P R F1

Baseline 73.0 65.5 68.3 54.2 65.7 58.1
40MS TIMESTEPS
LSTM (H loss) 73.3 64.1 67.6 60.6 64.1 61.2

LSTM (S(1,4,0.25) loss) 73.0 64.4 67.7 61.4 64.0 61.6
16TH NOTE TIMESTEPS

LSTM (H loss) 76.1 60.6 66.5 75.7 55.4 62.6
LSTM (S(1,1,�1) loss) 74.0 65.6 68.7 71.8 62.3 65.5
48TH NOTE TIMESTEPS

LSTM (H loss) 73.7 63.1 67.2 58.9 56.7 56.9
LSTM (S(1,2,0) loss) 73.5 63.5 67.3 60.5 57.6 58.1

TABLE V
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[30].THE BEST VALUES FOR EACH TIMESTEP ARE IN BOLD.
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Metric Thresh HMM Cross-entropy F-measure WGAN WGAN-Binary
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Model Framewise On-Notewise
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Baseline 73.0 65.5 68.3 54.2 65.7 58.1
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LSTM (S(1,4,0.25) loss) 73.0 64.4 67.7 61.4 64.0 61.6
16TH NOTE TIMESTEPS

LSTM (H loss) 76.1 60.6 66.5 75.7 55.4 62.6
LSTM (S(1,1,�1) loss) 74.0 65.6 68.7 71.8 62.3 65.5
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LSTM (H loss) 73.7 63.1 67.2 58.9 56.7 56.9
LSTM (S(1,2,0) loss) 73.5 63.5 67.3 60.5 57.6 58.1
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"	Main	conclusions	
§ Overall best: CNN, Sigmoid outputs, Cross-entropy loss 
§  LSTM strongly overfits on specific pianos in training set  
§ Cross-entropy is better than GAN and F-measure as loss 
§ Binary neurons do not help (neither with GAN nor F-measure loss) 

→	Same number of parameters: ~80 000 


