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Problem statement Dataset
» MAPS dataset: classical piano music
<Aco%stic>§ Tdt>_, = Split: trained on synthetic pianos,
mode = model = .
tested on real pianos
Timesteps Timesteps th
Audio Posteriogram Binary piano roll .. IanItS dowrl]sampled tO 16 nOt.e
_ timesteps using A-MAPS annotations
We compare various neural-network approaches to g )
learn a mapping from posteriogram to piano-roll - < |
N y B Training loss
-
Comparison: 16 configurations " Frame-based;
= Sigmoid outputs: Cross-entropy
e : N D
B Acoustic Model H Outputs = Binary outputs: F-measure
» Kelz et al. (2016): » Sigmoid outputs + threshold post-processing " Adversarial: Wasserstein GAN
= Piano-specific CNN » Threshold tuned on validation dataset = Conditional discriminator
= Bittner et al. (2017): » Dong et al. (2018): Binary neurons = Architecture inspired by DCGAN:
_ . o . (3x3 convolutions, stride 2x2)*4
= General-purpose » Forward: step function, backward: sigmoid
o . | _ _ + 2 dense layers
multi-pitch detection system = Good results for music generation with GAN
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B Transduction Model Bl Baselines
—>» (32) 5x5 > (32)1x1 = (1) 1x1 > Output
" Ycartet al. (2018): » Thresholding posteriogram
» Single-layer LSTM, 100 hidden nodes nout ——»| (32) 5x1, (threshold tuned on validation set)
P dilation 12x1 Legend _
" Newly-proposed CNN > (32) 1x1 Filters : (number) height x width = Poliner et al. (2016) :
. . Pitchwi ff HMM j
- Same number of parameters: ~80 000 > (32) 515 } - Channel concatenation tchwise on/o decoding

Results

Improvement over Thresholding Baseline Thresh Cross-entropy F-measure WGAN-Binary
Kelz N Bittner e LSTM | CNN | LSTM | CNN LSTM | CNN
| 67.9 66.8 70.8 66.5 70.4 64.1 68.7
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66.7 632 | 696 | 646 | 70.1 578 | 65.5
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45.0 43.4 53.2 43.1 51.6 41.1 46.9
e HMM 44.0 42.8 50.9 39.3 50.7 40.5 44.6
Cross-entropy  F-Measure WGAN  WGAN-Binary Cross-entropy  F-Measure WGAN  WGAN-Binary
Bittner Thresh

SIS Pl

Framewise F improvement

47.5 45.6 57.1 49.4 53.9 43.6 51.0

Cross-entropy F-measure WGAN-Binary
LSTM | CNN | LSTM | CNN LSTM | CNN
58.8 52.1 66.3 35.8 66.0 41.1 56.8
59.6 48.0 68.5 26.9 69.3 35.9 61.9
61.5 60.5 66.1 65.4 65.3 50.8 56.4
44.6 39.3 53.4 31.9 53.1 36.2 44.0
42.2 35.7 49.3 25.2 50.7 34.4 44.8
48.6 45.1 59.9 45.6 57.3 39.2 44.5
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